您好,欢迎您继续关注西安拓飞复合材料,今天西安拓飞给您介绍一下什么是单反面天线,希望这简单的介绍对您有一些启发和帮助。
典型形式是旋转抛物面天线(图1a)。它的工作原理与光学反射镜相似,是利用抛物反射面的聚焦特性。抛物面上点P的以O为原点的柱坐标方程为ρ2=4fz;以焦点F为原点的球坐标方程为r=2f/(1+cosθ),f为抛物面的焦距。因此,由焦点F发出的射线经抛物面反射后,到达焦点所在平面的波程为一常数,即反射面天线。
这说明各反射线到达该平面时具有相同相位,因而由馈源发出的球面波经抛物面反射后就变换成平面波,形成沿抛物面轴向辐射最强的窄波束。抛物面直径D和工作波长λ之比越大,则波束越窄,其半功率点宽度2θ0.5=(58°~ 80°) λ/D天线增益G与天线开口面(口径)几何面积A成正比,而与波长平方λ2成反比,即G=4πAη/λ2=(πD/λ)2η
式中η称为天线效率或口径效率,主要由口径利用系数与截获系数的乘积决定。口径利用系数取决于口径上场分布的均匀程度。当均匀分布(口径上各点场的相位相同且振幅相等)时,口径利用系数最大,其值为1。截获系数是馈源投射到反射面上的功率与馈源总辐射功率之比,理论上最大值也是 1。实际抛物面天线的效率约为0.5~0.7。导致口径效率下降的因素有:反射面形状不是严格的抛物面;馈源辐射的不是球面波;馈源的辐射不能保证抛物面口径场等幅分布且使一部分功率从口径边沿漏溢;馈源及其支撑杆对口径的遮挡等。馈源若不准确置于抛物面焦点也会引起口径效率下降;但有时还有意利用馈源偏离焦点来改变天线波束的指向和宽度。当馈源垂直于抛物面焦轴作上下偏移时,波束最大方向将指向与馈源偏移方向相反的一侧;当馈源沿焦轴作前后偏移时,则波束展宽。然而这类偏移不能太大,否则导致波束形状的严重畸变。
图1b为偏置抛物面天线。其馈源仍置于一旋转抛物面的焦点,但只取此抛物面一侧的一部分作为反射面而使馈源不会遮挡反射面口径的辐射,从而改善口径效率和波束旁瓣特性。另一种偏置结构是喇叭-抛物面天线(图1c),它是由一个角锥或圆锥喇叭直接接到偏置抛物面上而成。也可利用球面的一部分作为反射面(图1d)。馈源通常置于球面半径R的1/2处,这时馈源所对的小部分球面较接近于以 R/2为焦距的抛物.
上最大的反射面天线是直径 305米的球形反射面射电望远镜。它是固定的,装于波多黎各岛的山谷中,表面用金属线网铺织而成,移动悬挂于其上空的馈源可改变波束指向,并依靠地球自转来扫过360°星空。
以上就是今天西安拓飞的小编给大家整理的材料,不知道对您有没有帮助呢?如果您还想了解更多,欢迎你拨打电话或者前来公司面谈,我们都会为您送上真诚的服务。本文关键词:西安碳纤维天线反射面